@ Copyright John Reuben, VIT University, INDIA

Appendix A

Clock mesh Simulation in NGSPICE

A.1 NGSPICE

NGSPICE is a mixed-level/mixed-signal, open source circuit simulation program for nonlin-
ear and linear analyses. It is derived from Spice3f5, the last Berkeley’s release of Spice3
simulator family. It is an amalgamation of three programs: Spice3f5, Xspice and Ciderlbl.
As already stated in chapter 3 and 4, NGSPICE was extensively used in this research for
clock mesh simulation. In this appendix, we briefly describe the NGSPICE code to simulate

our clock mesh.

A.1.1 Uniform distributed RC model(URC)

In Chapter 3, the m-model of the mesh was presented. We have used the URC facility of
NGSPICE to form the m-model of the clock mesh. The model is accomplished by a subcir-
cuit type expansion of the URC line into a network of lumped RC segments with internally
generated nodes. The general structure of the URC model is UXXXX nl n2 n3 mname len
nl and n2 are the two element nodes the RC line connects, while n3 is the node to which
the capacitances are connected. mname is the model name, len is the length of the RC line
in meters. Depending on the length of the wire, this model internally decides the number of

lumped segments needed to accurately model the wire. For example

.MODEL URCMOD URC(RPERL=300K CPERL=0.16nF)
Umeshwire 1 2 0 URCMOD L=500n

represents a uniform distributed model of a wire between nodes 1 and 2 of length 500

105

John Reuben
Typewritten Text
@ Copyright John Reuben, VIT University, INDIA

John Reuben
Typewritten Text

nm. RPERL represents the resistance per unit length of the wire and CPERL represents
the capacitance per unit length of the wire. RPERL=300K translates to a resistance of 0.3
Ohm/pzm and CPERL=0.16nF translates to a capacitance 0.16 fF/;m, the values in 45 nm as
specified by ISPD [59].

A.1.2 NGSPICE file for a sample mesh

\Y
1 GHz 7p bD
clock 3 9
pulse 1 7

S
10 um 4 5
4 , 6 60 um
|
50 um 4? 20 um

10 um o— I3
S2 10um y
1 2 3
- 120 um >

Figure A.1: A simple mesh to illustrate the NGSPICE file formation

Below is the ngspice description of the above mesh. The entire mesh is driven by a sin-
gle buffer at node 7. s; and s, are the 2 clock sinks having a capacitance of 30fF each. iz
represents an intermediate node of the mesh edge between nodes 3 and 6.

*Simulation of test mesh in NGSPICE
*45nm PTM model file is used to simulate buffers
.nclude tuned_45nm_HP.pm

Ul 120 URCMOD L=60u

U223 0 URCMOD L=60u

U314 0URCMOD L=30u

U4 250 URCMOD L=30u

U5 3136 0 URCMOD L=10u

U636 6 0 URCMOD L=20u

U151i36 s2 0 URCMOD L=30u

C2s2 0 30f

.probe v(s2)

U7 4 i45 0 URCMOD L=50u

U8 i45 5 0 URCMOD L=10u

U16 145 s1 0 URCMOD L=10u
C1s10 30f

106

.probe v(s1)

U9 5 6 0 URCMOD L=60u

U104 7 0 URCMOD L=30u

U115 8 0 URCMOD L=30u

U12 6 9 0 URCMOD L=30u

U137 8 0 URCMOD L=60u

U14 8 9 0 URCMOD L=60u

.MODEL URCMOD URC(RPERL=300K CPERL=0.16nF)
* modelling the clock input at the buffer

VIN 7p 0 DC 0 PULSE(0 1 0.1n .05n .05n 0.4n 1n)
VDD 100DC 1

* MOS buffer

MNI1 0 7p ib 0 TN L=45N w= 1560nm

MP1 10 7p ib 10 TP L=45N w= 2200nm

MN2 0ib 7 0 TN L=45N w= 1560nm

MP2 10ib 7 10 TP L=45N w= 2200nm

.probe v(7p)

.probe i(VDD)

tran 0.001n 1.2n

.measure tran pwr INTEG i(VDD) from=0 to=1.2n

.end

‘.probe’ command is used to save the voltage at a node. we save the volatages at nodes
at which we want to find the clock latency - at sinks s1 and s2. A clock is fed at node ‘7p’
by the PULSE command. The arguments of PULSE command are as follows
PULSE(V1 V2 TD TR TF PW PER)

1. V1 - initial voltage valuse
2. V2 - pulsed voltage value
3. TD - Delay time

4. TR - Rise time

5. TF - Fall time

6. PW - Pulse width

7. PER -Pulse period

107

The buffer is given a DC power supply of 1 volt. We save the current drawn from Vpp using
the ‘.probe’ command. This is needed to calculate the total power which is calculated by
integrating the current drawn from the power supply in 1 cycle. ‘.tran’ command does a

transient simulation for the time specified(1.2 ns).

A.1.3 Executing the .cir file

There are two ways to simulate the .cir file in NGSPICE - batch mode and interactive mode.
In the batch mode, we run the program ‘window1’.cir as follows

ngspice -b -r windowl.raw -o window1.log windowl.cir

ngspice will start, simulate according to the .tran command and store the output data in a
rawfile window1.raw. Comments, warnings and other informations will go to log file win-
dow1.log created in the folder where window1.cir is present.

In interactive mode, we run the program ‘window1.cir’ as follows:

ngspice

NGSPICE will respond as

ngspice 1 ->

we can then source the .cir file as follows

ngspice 1 -> source window1.cir

ngspice 2 ->run

ngspice 3 ->plot allv

allv command plots all voltages which are probed in the .cir file. If the NGSPICE file has
control statements(as will be the case when we do monte carlo simulations), batch mode
should not be used and we need to invoke NGSPICE directly as follows

ngspice windowl.cir

A.1.4 Analysing the NGSPICE output file(.raw)

Typically, the clock distribution network will have a few thousand sinks and its not possible
to manually analyse the clock signal at the sinks. Also, the skew will be in the order of
ps which cannot be ascertained accurately by visual inspection. The .raw file contains the
value of voltages(which were probed in the .cir file) at sinks during the entire duration of the
transient simulation. This is stored as a vector. The HSPICE toolbox for MATLAB ([65]) is
a collection of programs to import this information in the raw file into MATLAB. The main
program is a mex program called loadsig that reads binary output files of transient, DC, or
AC sweep data generated by HSPICE or NGSPICE into Matlab or Octave. The following

steps can be followed to create an extraction environment in MATLAB.

108

1. Download “Hspice Toolbox for Matlab®) and Octave (also for use with Ngspice)"
from http://www.cppsim.com/download_hspice_tools.html

2. Place these two downloaded folders in the ToolBox folder of MATLAB installation in
the system.

3. Open MATLAB. In File choose Set Path - - - Add Folder option, select the two new
folders added in Toolbox folder. SAVE

4. In MATLAB, make HSPICE toolbox as present folder and give command
mex loadsig.c

The extraction setup is ready. Supposing the output file of testmesh.cir(Figure A.1) is
testmesh.raw,
> z = loadsig(‘testmesh.raw’);
will load the simulation data of testmesh.cir into a structure z
>lssig(z)
lists the signals in z structure. They are 7p, sl, s2 and i(Vpp).
> plotsig(z, “7p ,s1 ,s2”)
plots the input clock and clock at the sinks s; and s,. As can be seen in Figure.A.2, the
latency is visible, but the skew. i.e the difference in clock arrival time between s; and s, is

not very evident since it is in pico seconds.

12 T T T I
: : : Input clock
o~ 1 — Clock at s1
2 : : : — Clock at s2
g 08 frooe
» : : : : :
P 06
o : : : : :
~ : : : : :
g_ 04F - |
= : : : : :
;\: 02} SR CERREREE S SRR A
] : : : : :
o : : [
[3) 0 :
—0.2 ; ; ; ; ;
0 0.2 04 0.6 0.8 1 1.2
TIME in sec oan®

Figure A.2: Simulated clock waveform at input(7p), s1 and s2

If we zoom a certain section near the fall of the first clock pulse, we can observe the
skew as shown in Figure.A.3. But since we have to analyse hundreds of sinks, the time (t,
ty, - - - ,t,) the clock takes to reach 50% of its maximum value at sinks s;, S,, - - - ,S, can be
calculated from the z structure by writing a MATLAB program.

109

Clock latency at $; = ti-tinput clock

Then, Clock skew is {maximum latency - minimum latency} of all sinks.

1.02- T
1.01+ 1 |
R -==s2
1 —— - s S i
@ NS
5 0.99- R R
c ~
© ~
< 0.98 N
?ﬂ‘ A}
¢ 0.97 Mo
2 N
K] A\
© 0.96 \ M
\
0.95- g
0.941 q
L L L L L
5.65 5.7 5.75 5.8 5.85
TIME in sec

x10"°

Figure A.3: A certain section zoomed to depict skew between s1 and s2

A.1.5 Power dissipation

As already stated,

.measure tran pwr INTEG i(VDD) from=0 to=1.2n

will display the integrated value of current drawn from 0 to 1.2 nano seconds.

pwr=4.1234 e-11

This is divided by the time period of 1 clock cycle to get the total power dissipated in the
clock mesh in 1 clock cycle.

110

Appendix B

Monte Carlo Simulation in NGSPICE:
Incorporating Process, Voltage and

system variations

B.1 Monte Carlo(MC) simulation

Monte Carlo methods refer to a broad class of experiments that rely on repeated random
sampling to predict the behavior of an entity whose behavior cannot be predicted in a deter-
ministic manner. In VLSI, Monte carlo methods are often used to study the effect of voltage,
temperature and within-die process variations on the performance and characteristics of a
circuit. This is done by simulating the circuit over a wide range of randomly chosen values
for the parameters which are subject to variation. For example, if supply voltage Vpp is sub-
ject to variations, we simulate the circuit over many possible values of Vpp. We know that
the Vpp directly affects the propagation delay of a circuit. Monte Carlo simulation attempts
to predict the variation in delay of a circuit in response to variation in Vpp by studying the
distribution of the delay across variations in Vpp. In deep Sub micron technology, there
may be many variations like process variations, temperature , Vpp affecting the circuit at the
same time. In these cases, Monte Carlo simulations vary all the parameters simultaneously
and perform numerous simulations and measure the circuit characteristics like delay, power
etc. The mean and variance of the measured circuit characteristic obtained by plotting the
simulation results can give an estimate of the performance of the circuit in the presence of
variations. Although computationally intensive, MC simulation are extensively used to study

the fabrication readiness of integrated circuits in semi-conductor industry. The increase in

111

Table B.1: Variations considered in MC simulations

Parameter Distribution Variation
Process Channel length Gaussian 30 with mean 45 nm
Vih Gaussian 3¢ with mean 0.404 V
for nmos and -0.384 V
for pmos
Voltage VbbD Gaussian 3¢ with mean 1V
System Inter-buffer skew | Uniform 0-50 ps

computation power of computers due to parallel processors in recent years make MC sim-
ulation worth and will be so in the near future. The NGSPICE scripting language may be
used to run MC simulations with statistically varying device or model parameters. NGSPICE
scripting language supports different statistical distributions for the parameters to be varied

1. uniform distribution
2. gaussian distribution
3. poisson distribution
4. exponential distribution

As already stated in Chapter 4, Monte Carlo simulations with the variations considered
in Table B.1 were performed on the clock mesh. In this appendix, we introduce NGSPICE
scripting language and describe how it can be used to vary the parameters during circuit
simulation in an automated manner. Thus MC simulation is achieved with minimal manual

effort.

B.1.1 NGSPICE scripting language

Expressions, functions, commands, variables, vectors and other pseudo-code like structures(example
if...else, while...do loop) may be assembled into scripts within a .control - - - .endc section
of the original .cir file. The script allows to automate complex ngspice behavior: simula-
tions are performed, output data are the analyzed, simulations are repeated with modified
parameters and output data are assembled. Detailed description of the scripting language, its
capabilities and executing method in the simulation flow can be accessed from [72].

Inside the .control statement, we define our two distributions as follows:
define gauss(nom, var, sig) (nom + (nom*var)/sig * sgauss(0))
define unif(nom, var) (nom + (nom*var) * sunif(0))
A call to sgauss(0) will return a gaussian distributed random number as a vector of length
1. similarly, sunif(0) returns a uniformly distributed random number as a unit length vector.
The function gauss(nom,var,sig) returns nominal value plus variation drawn from Gaussian

distribution with mean 0 and standard deviation var (relative to nominal) divided by sigma.

112

B.1.2 Incorporating Process variation

We vary channel length and threshold voltage of the MOSFET buffers to incorporate the
effect of process variations in our clock mesh. Supposing TN and TP are the NMOS and
PMOS transistor models, the threshold voltage Vg, can be varied using the altermod com-
mand as follows:

set n1vthO=@TN][vthO]

set plvthO=@TP[vthO]

altermod @TN[vthO]=gauss($nl1vth0, 0.05, 3)

altermod @TP[vthO]=gauss($p1vth0, 0.05, 3)

The above statement varies the nominal threshold voltage available in the model file as a
Gaussian distribution with 3¢ variation where ¢ is 5% of nominal value. altermod operates
on models and can be used to change any transistor model parameter. In the simulation loop
the altermod command changes the model parameters before a call to tran.

In NGSPICE scripting language, alter command changes the value for a device or a speci-
fied parameter of a device or model. Using it, we can vary the channel length as follows:
alter MN1 L= gauss(45n, 0.05, 3)

alter MP1 L= gauss(45n, 0.05, 3)

MN1 and MP1 are instantiation of NMOS and PMOS and they are varied as a Gaussian

distribution with 3¢ variation where o 1s 5% of nominal value.

B.1.3 Incorporating voltage variation

We would have already specified Vpp as

VDD nl1 0 DC 1 *represents 1 V Dc value between node nl and ground

we can vary it as

alter VDD dc = gauss(1, 0.05, 3)

which means that the nominal supply voltage of 1 V is varied as a Gaussian distribution with

30 variation where ¢ 1s 5% of nominal value.

B.1.4 Incorporating system variation

Incorporating the system variation i.e the inter-buffer skew is a rather strenuous task in
NGSPICE. As already stated in Chapter 4, the inter-buffer skew is induced by variations
in the top-level tree driving the mesh. Hence,the clock will not reach all the mesh buffer
inputs at the same time. To incorporate this uncertainty in clock arrival time, we have to
introduce uncertainty in the PULSE command. As already stated, the PULSE command has
a TD parameter which specifies the delay in the PULSE signal. We have to incorporate a
0-50 ps difference in the clock arrival time at mesh buffers. We choose 125 ps as the mean
arrival time. By uniformly varying 125 ps by 20%, we will get arrival times between 100 ps

113

(125-25 ps) and 150 ps (125+25 ps). We form a variable called tdi to denote the delay of the
pulse at i*" buffer.

let td1 = unif(0.125n, 0.2)

let td2 = unif(0.125n, 0.2)

let tdn = unif(0.125n, 0.2) *for n!” mesh buffers
and then feed the delayed clock to the mesh buffer inputs as

alter @ VINI[PULSE] =[0 1 $&td1 .05n .05n 0.4n 1n]
alter @ VIN2[PULSE] =[0 1 $&td2 .05n .05n 0.4n 1n]

alter @ VINN[PULSE] =[0 1 $&tdn .05n .05n 0.4n 1n]

B.1.5 Structure of the whole NGSPICE file for a particular
benchmark

.nclude tuned_45nm_HP.pm

C45 45 0 6.435000e+000f *these are sinks inside the window
.probe v(45)

C46 46 0 6.435000e+000f

.probe v(46)

C977 977 0 1.071000e+001£

.probe v(977)

C978 978 0 15f

.probe v(978)

*No of sinks inside this window is 292

*steiner tree

URC4 819 815com 0 URCMOD 1=7.737836e+003n
URCS 1s 815com 0 URCMOD 1=5.702164e+003n
URC6 815 1s 0 URCMOD 1=1920n

URC7 815com 815stub 0 URCMOD 1=1.772324e+004n
URCS 220 220stub 0 URCMOD 1=6000n

*steiner tree

URC9 205 205com 0 URCMOD [=26400n

URCI10 201 205com 0 URCMOD 1=26400n

URC11 205com 205stub 0 URCMOD 1=52800n

114

- other steiner trees
URC244 810 810stub 0 URCMOD 1=1.767500e+003n rooms with only one sink connected
to mesh by stub
URC245 917 917stub 0 URCMOD 1=750n
URC246 799 799stub 0 URCMOD 1=3000n
URC247 804 804stub 0 URCMOD 1=12000n
URC248 88 88stub 0 URCMOD 1=960n
URC249 93 93stub 0 URCMOD 1=960n

URC373 In 3n 0 URCMOD 1I=117900n *mesh edges,1n and 3n represents mesh nodes
URC374 1n 2n 0 URCMOD 1=48720n
URC375 2n 4n 0 URCMOD 1=117900n

C193n 193n 0 2.464125e+001f *sinsk capacitances outside the window are lumped at the
nearest meshnode

C194n 194n 0 5.142750e+001f

C195n 195n 0 1.071375e+001f

VIN1 linp 0 DC 0 PULSE(O 1 ONS .05NS .05NS .40NS 1nS) *clock at mesh buffers
VIN2 2inp 0 DC 0 PULSE(0 1 ONS .O5NS .05NS .40NS 1nS)

.model URCMOD URC(RPERL=300K CPERL=0.16nF)

VDD 1v 0 DC 1.00

MNT1 0 linp 2i 0 TN L=45N w=82n *mesh buffer at mesh node
MP1 1v linp 2i 1v TP L=45N w=114n

MN2 0 2i 2n 0 TN L=45N w=1718n

MP2 1v 2i 2n 1v TP L=45N w=2451n

.control

define gauss(nom, var, sig) (nom + (nom*var)/sig * sgauss(0))

define unif(nom, var) (nom + (nom*var) * sunif(0))

let mc_runs=200

let count=1

dowhile count < mc_runs

set n1vthO=@TN[vthO]

115

set plvthO=@TP[vthO]

altermod @TN[vthO]=gauss($n1vth0, 0.05, 3)
altermod @TP[vthO]=gauss($p1vth0, 0.05, 3)
alter VDD dc = gauss(1, 0.05, 3)

let td1 = unif(0.125n, 0.2)
let td2 = unif(0.125n, 0.2)

let td207 = unif(0.125n, 0.2)
let td208 = unif(0.125n, 0.2)
alter @ VINI[PULSE] =[0 1 $&td1 .05n .05n 0.4n In]
alter @ VIN2[PULSE] =[0 1 $&td2 .05n .05n 0.4n In]

alter MN1 L= gauss(45n, 0.05, 3)
alter MP1 L= gauss(45n, 0.05, 3)

tran 0.001n 1.4n

meas tran pwr INTEG i(VDD) from=0 to=1.4n
save i(VDD)

let power=-pwr/1.4n

save power

if count = 1

write LL1.raw

end

if count = 200
write LL200.raw
end

let count= count +1
reset

end

.endc

.end
If this document was useful for your research, please cite my paper:

John Reuben, Mohammed Zackriya, Salma Nashit and Harish M Kittur, “Capacitance
driven clock mesh synthesis to minimize skew and power dissipation”, IEICE Electronics Express,
Vol.10, No.24, 2013.

116

John Reuben
Typewritten Text
If this document was useful for your research, please cite my paper:
John Reuben, Mohammed Zackriya, Salma Nashit and Harish M Kittur, “Capacitance
driven clock mesh synthesis to minimize skew and power dissipation”, IEICE Electronics Express, Vol.10, No.24, 2013.

