• Navigation überspringen
  • Zur Navigation
  • Zum Seitenende
Organisationsmenü öffnen Organisationsmenü schließen
Friedrich-Alexander-Universität Chair of Computer Science 3 CS3
  • FAUZur zentralen FAU Website
  1. Friedrich-Alexander-Universität
  2. Technische Fakultät
  3. Department Informatik
Suche öffnen
    1. Friedrich-Alexander-Universität
    2. Technische Fakultät
    3. Department Informatik
    Friedrich-Alexander-Universität Chair of Computer Science 3 CS3
    Menu Menu schließen
    • Research
    • Teaching
    • Staff
    • Jobs
    1. Startseite
    2. Research
    3. ReLoFeMris

    ReLoFeMris

    Bereichsnavigation: Research
    • AIMS
    • ECAS
    • Embedded Computing
    • ETI Projects
    • ETI: Energy-efficient Architectures
    • Former Projects
    • FORMUS³IC
    • HSA
    • IMBRA
    • IntelRadar
    • KI-Flex
    • KI-Lernlabor
    • LO³-ML
    • LODRIC
    • Memristive Computing
    • MIMEC
    • Neuromorphic Computing
    • Non-Volatile Processors (NVPs)
    • Performance Modelling
    • POV.OS
    • PowerSOC
    • ReLoFeMris
    • RISC-V
    • SDI
    • Smart PMU

    ReLoFeMris

    Prof. Dr.-Ing. Dietmar Fey

    Prof. Dr.-Ing. Dietmar Fey

    Department Informatik (INF)
    Lehrstuhl für Informatik 3 (Rechnerarchitektur)

    Raum: Raum 07.156
    Martensstr. 3
    91058 Erlangen
    • Telefon: +49 9131 85-27003
    • E-Mail: dietmar.fey@fau.de
    • Webseite: https://www.cs3.tf.fau.de/person/dietmar-fey/

    Sprechzeiten

    nach Vereinbarung

    Reconfigurable logic and multi-bit in-memory processing with ferroelectric memristors

     

    IoT and in general embedded devices require energy-efficient solutions. Today frequently data transfer operations are the most energy-consuming operations in microcontrollers or microprocessors, in particular between memory or even caches on one side and processor cores on the other side at least if we compare them to simple arithmetic operations like e.g. an addition. Therefore, especially for embedded devices it makes sense to execute simple operations directly in-situ where the data or the operands are located or are generated, namely in the memory or directly at sensor nodes. Near- and in-memory-computing is in principle an answer to the high energy costs of data transfer operations.

    An open and in the community frequently discussed question is how new devices like memristors can support this. In particular in-memory-processing, in which opposed to near memory-computing the storage element becomes an inherent part of the processing step, requires the basic memory element to be significantly modified.

    Friedrich-Alexander-Universität
    Lehrstuhl für Informatik 3

    Martensstrasse 3
    91058 Erlangen
    • Impressum
    • Datenschutz
    • Barrierefreiheit
    • RSS Feed
    Nach oben